Molecular Rotations of Polyhydroxycyclohexanes in Relation to their Structures¹⁾

By Shukichi Yamana

(Received November 5, 1960)

Availability of PM-method²⁾ for the case of $[M]_D^{20}(W)^{3)}$ of polyhydroxycyclohexanes of C1 conformation was tested here. Names of several substances under discussion, together with the orientation of the unit groups, (OH), in their molecules and their $[M]_D^{20}(W)$ are shown in Table I⁴⁾. At first, by using the theoretical

¹⁾ Presented at the Symposium on the Structural Chemistry of the Chemical Society of Japan, Sapporo, August 5, 1960.

²⁾ S. Yamana, This Bulletin, 31, 558 (1958).

³⁾ $[M]_{D}^{20}$ (W) is a notation which represents the optical molecular rotation of the plane polarized light of wavelength of D-line at 20° C by an aqueous solution of an optically active substance. $[\mu]_{Dobs}^{20}$ means a corresponding partial molecular rotation which is caused by the dynamical coupling effect between any two members of unit groups in the molecule.

^{...} $[M]_D^{20}(\mathbf{W}) = \sum_{i \neq k} [\mu]_{\mathbf{D} \text{ obs}}^{20} = \sum_{i \neq k} \zeta_i \zeta_k [\mu]_{\mathbf{D} \text{ calcd}}^{20}$

⁽Ref. Eq. 3 in the previous paper?)). Here, $[\mu]_{\mathbf{D}}^{20}$ calculated value by using Kirkwood's theoretical formulae and ζ_i and ζ_k are adjustable parameters.

⁴⁾ The central group, cyclohexane-ring, does not appear in the calculation.

TABLE I

Name	OH)	Obs.	Calcd.	
Cyclohexane	Orientation of unit group, (OH)	$[M]_{\mathbf{D}}^{20}(\mathbf{W})^{5)}$	$\sum [\widehat{\mu}]_{\mathbf{D}\mathrm{obs}}^{20}$	Whiffen9)
() 1/2 diol	$[(1\beta), (2\alpha)]$	-48.26	-42.7(-42.7)	-45
(+) 3/1,2 triol	$[(1\alpha), (2\alpha), (3\beta)]$	$92.0^{7)}$	92.2(96.3)	90
(-) 1,2,3/4 tetrol	$[(1\beta), (2\beta), (3\beta), (4\alpha)]$	$-49.2^{7)}$	-49.5(-53.6)	-45
(+) 3/1,2,4 tetrol	$[(1\alpha), (2\alpha), (3\beta), (4\alpha)]$	53.96)	49.5(53.6)	45
(-) 1,3/2,4 tetrol	$[(1\beta), (2\alpha), (3\beta), (4\alpha)]$	-42.77	-42.7(-42.7)	-45
(+) 3,5/1,2,4 pentitol	$[(1\alpha), (2\alpha), (3\beta), (4\alpha), (5\beta)]$	86.28)	85.4(85.4)	90
(+) 1,3,4/2,5 pentitol	$[(1\beta), (2\alpha), (3\beta), (4\beta), (5\alpha)]$	429)	49.5(53.6)	45
(+) 3,5,6/1,2,4 hexitol	$[(1\alpha), (2\alpha), (3\beta), (4\alpha), (5\beta), (6\beta)]$	1179)	128.1(128.1)	135

Table II. $[\mu]_{\text{Dotaled}}^{20}$ {3/(n^2+2)} and $[\mu]_{\text{Dotas}}^{20}$, caused by the dynamical coupling effect between any two members of unit groups in polyhydroxycyclohexane of C1 conformation

	POLYHYDROXYCYCLOHEXANE OF CI CONFORMATION									
	6β	6α	5β	5α	4β	4α	3β	3α	2β	2α
1α	0	-A	-B	0	0	0	В	0	0	\boldsymbol{A}
1,3	-A	\boldsymbol{A}	0	В	0	0	0	<i>⊢B</i>	\boldsymbol{A}	-A
2α	-B	0	0	0	В	0	\boldsymbol{A}	-A		
2β	0	В	0	0	0	-B	-A	0		
3α	0	0	В	0	0	\boldsymbol{A}				
3β	0	0	0	-B	\boldsymbol{A}	-A				
4α	$\boldsymbol{\mathit{B}}$	0	\boldsymbol{A}	-A						
4β	0	-B	-A	0						
5α	0	\boldsymbol{A}								
5β	\boldsymbol{A}	-A								
N	Note:									
			E 720	(2// 9	(4)	гт %	4			

 $[\mu]_{\mathbf{D}calcd}^{20} \{3/(n^2+2)\}$ $[\mu]_{\mathbf{D}cbs}^{20}$. A 11.73 (6.50)¹²⁾ 42.7 (42.7) B 1.88 (1.66) 6.8 (10.9)

formulae of Kirkwood¹⁰, all $[\mu]_{Dealed}^{20}\{3/(n^2+2)\}$'s possible in the molecule were calculated¹¹⁾ and given in Table II. Next, by using these values of $[\mu]_{Dealed}^{20}\{3/(n^2+2)\}$ and an adjustable parameter, ζ_{OH} , the following equation was obtained. $[M]_{D}^{20}(W)$ of (-)1, 3/2, 4 tetrol, -42.7 $\equiv \sum [\mu]_{Dobs}^{20}$ of (-)1, 3/2, 4 tetrol $= (1\beta) \text{ Å } (2\alpha) + (1\beta) \text{ Å } (3\beta) + (1\beta) \text{ Å } (4\alpha) + (2\alpha) \text{ Å } (3\beta) + (2\alpha) \text{ Å } (4\alpha) + (3\beta) \text{ Å } (4\alpha)^{13} = \{(n^2+2)/3\}\zeta_{OH}^2 + (1\beta) \times (2\alpha) + (1\beta) \times (3\beta) + (1\beta) \times (4\alpha) + (2\alpha) \}$

$$\times (3\beta) + (2\alpha) \times (4\alpha) + (3\beta) \times (4\alpha) \}^{149} = \{ (n^2 + 2)/3 \} \zeta^2_{OH} (-11.73 + 0 + 0 + 11.73 + 0 - 11.73)$$

$$\therefore \zeta^{2}_{OH} = 3.6402\{3/(n^{2}+2)\}$$

or

$$\zeta_{\text{OH}} = 1.9079\{3/(n^2+2)\}^{1/2}$$

The values of A and B for $[\mu]_{\text{Dobs}}^{20}$ in Note of table II, can be obtained by multiplying those for $[\mu]_{\text{Dealed}}^{20}\{3/(n^2+2)\}$ by $\zeta_{\text{OH}}^2\{(n^2+2)/3\}$. By using the values of $[\mu]_{\text{Dobs}}^{20}$ in Table II, $\sum [\mu]_{\text{obs}}$ of all polyhydroxycyclohexanes were calculated and given in the fourth column of Table I. Referring to Table I, it becomes apparent that PM-method is more suitable one to estimate $[M]_{\text{D}}^{20}(W)$ of polyhydroxycyclohexanes than Whiffen's method⁹, especially when the optical center is located at the center of mass of a bond.

The author wishes to express his sincere thanks to Professor T. Yamamoto, Kyoto University, for his advice and encouragement.

Department of Chemistry Kyoto Gakugei University Fushimi-ku, Kyoto

⁵⁾ From the standpoint that $\partial [M]_D(W)/\partial T$ is small, some values were presumed from $[M]_D(W)$ which had been observed in the neighborhood of 20°C but not exactly at 20°C.

⁶⁾ Th. Posternak, D. Reymond and H. Friedli, Helv. Chim. Acta, 38, 205 (1955).

⁷⁾ Th. Posternak and D. Reymond, ibid., 38, 195 (1955).

⁸⁾ Th. Posternak, ibid., 33, 343 (1950).

⁹⁾ D. H. Whiffen, Chemistry and Industry, 1956, 964.

¹⁰⁾ S. Yamana, This Bulletin, 30, 203 (1957).

¹¹⁾ The molecular model of a cyclohexane derivative and optical data of (OH) are assumed as follows. The length of C-C bond is 1.54Å, and that of C-O bond is 1.42Å. The valency angle of C atom is 109° 28'. Mean polarizability, α , of (OH) is 1.40×10⁻²⁴ (cc.). Anisotropy ratio, β of (OH) is 0.35¹⁰).

¹²⁾ The values, calculated by supposing that the optical center of (OH) is located at its O atom, are given in parentheses.

¹³⁾ S. Yamana, This Bulletin, 30, 916 (1957).

¹⁴⁾ Ref. Eq. 32 in the foot-note 32 of the previous paper²⁾.